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Abstract: 
 
In this article we provide a brief overview of three groups of quantitative 
research methods commonly used in physics education research (PER): 
descriptive statistics, inferential statistics, and measurement instrument 
development and validation. These quantitative research methods are used 
respectively in three major types of PER, namely survey research, 
experimental/quasi-experimental studies, and measurement and evaluation 
studies. In order to highlight the importance of the close alignment 
between research questions and selected quantitative research methods, we 
review these quantitative techniques within each research type from three 
perspectives: data collection, data analysis, and result interpretation. We 
discuss the purpose, key aspects and potential issues of each quantitative 
technique, and where possible, specific PER studies are included as 
examples to illustrate how these methods fulfill specific research goals. 
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1. Introduction 

Physics education research (PER) uses many forms of inquiry to 
investigate the learning and teaching of physics. Broadly speaking, there 
are three types of research methods that are used frequently in PER: 
qualitative methods, quantitative methods, and mixed methods.1-3 In a 
previous volume of Getting Started in PER, Otero and Harlow laid out 
useful guidelines for carrying out qualitative studies and briefly touched 
on topics related to mixed approaches.4 In this article, we introduce basic 
quantitative methods for empirical investigations and discuss their 
purposes, procedures and potential issues in the context of physics 
education research. Where possible, we also discuss studies from previous 
literature to illustrate how various quantitative techniques are used in PER.  

Before starting, it is important to note that this article is not intended to be 
a comprehensive review of all quantitative methods in educational 
research, nor is it meant to be an introduction to basic statistics. Instead, 
all quantitative methods discussed in this article are tied closely to theory-
oriented research questions of interest to PER. 

With these notes in mind, we first start with a brief introduction to (1) the 
role of quantitative methods in PER, (2) the differences between 
quantitative methods in PER and those in other areas of physics, and (3) 
the nature of quantitative research questions. We then discuss respectively 
in Sections 2–4 some basic PER quantitative methods that are commonly 
used in three different types of PER studies: (1) survey research, (2) 
experimental/quasi-experimental studies, and (3) measurement and 
evaluation studies. Finally, a summary of useful references to other 
resources is provided in Section 5. 

1.1 The Role of Quantitative Methods in Physics Education Research 

To best appreciate quantitative studies, we need to understand when and 
why quantitative methods are involved in physics education research. 
Since the field of PER emerged mainly from physics and by physicists, 
there has historically been an emphasis on quantitative research in PER. 
Generally speaking, a quantitative method is used when a researcher 
wishes to quantify observations through some statistical techniques in 
order to better describe, explain, and make inferences about certain events, 
ideas or actions in physics education. 
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Quantitative methods have many advantages compared to other research 
methods. As opposed to qualitative PER studies, quantitative methods 
allow a researcher to focus on the variables of interest in order to study the 
relationships or even causal relationships among the variables.5, 6 Also, 
because quantitative methods mostly deal with numerical data, it is 
conceivable that fewer human biases are introduced in processing and 
communicating information.5, 6 

However, it is important to remember that these advantages are based on a 
crucial premise; that is, data collected from empirical PER studies must be 
numerical or at least quantifiable in some form. Quantifying observations 
is called measurement. Since numerical data are necessary for quantitative 
methods, measurement is the foundation and often the starting point of 
quantitative methods. 

1.2 Differences between quantitative methods in PER and those in 
other physics areas 

As we embark on any quantitative PER study, it is helpful to pause and 
think about the differences between the quantitative techniques used in 
PER and those used in other areas of physics.  

One unique aspect of quantitative PER studies that separates them from 
those in other fields of physics is subjects of interest. Measurement in 
traditional physics involves physical entities or properties of physical 
entities (even as intangible as electric field or temperature). These subjects 
of interest have been well defined and have a universally agreed-upon set 
of variables associated with them. Measurement and data analysis of these 
variables typically follow some well-established procedures that can 
facilitate a physicist’s subsequent efforts in building models of how the 
physical world works. On the other hand, quantitative PER studies almost 
always seek to investigate non-physical characteristics of human beings 
engaged in teaching and learning. These characteristics, such as 
conceptual understanding, reasoning skills, scientific practices, beliefs, 
attitudes, and epistemologies, are known as constructs.7 Researchers often 
have not yet reached a consensus with regard to the definitions of these 
abstract constructs, not to mention that they usually lack a set of 
commonly accepted variables for measurement or analysis. This 
unarguably makes quantitative studies in PER challenging to conduct 
properly. 
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Another unique aspect of quantitative PER studies relates to measurement 
instruments. In traditional physics, many measurement tools are globally 
calibrated and standardized. Even with tools that are designed for use in 
different measurement systems, standard unit conversion still allows 
quantitative analysis to be readily comparable across diverse situations. 
However, in PER there is no definitive set of tools that are globally 
accepted for measurement, although researchers have been striving to 
reach common ground in this matter. 

Even if there were a globally standardized measurement of some variables 
of interest in PER, quantitative data analysis would still differ drastically 
from that in other physics areas because of the difference in the nature of 
quantitative data. Generally speaking, there are four different scales of 
quantitative data: nominal, ordinal, interval, and ratio.8  

 Nominal data, also known as a type of categorical data, is discrete 
and has no order. For instance, data that indicates student gender is 
considered as nominal. In practical analysis, we may use the 
number of “1” to represent male and “0” for female, but it doesn’t 
make sense to say that 1 is greater than 0 in this case.a 

 Ordinal data, another type of categorical data, is also discrete but 
has order. Consider the ratings in the Colorado Learning Attitudes 
Survey about Science or the Maryland Physics Expectation 
Survey.9 The five rating points, ranging from 1 (strongly disagree) 
to 5 (strongly agree), indicate an increasing level of agreement. So, 
a choice of 5 means a higher level of endorsement than a choice of 
1, but the difference in quantity between 5 and 4 (agree) may not 
necessarily be the same as the difference between 4 (agree) and 3 
(neutral).b  

 Interval data is continuous on a scale of equal intervals, and has 
order. A temperature reading measured either in Celsius or 
Fahrenheit is an example of interval data. Regardless of where it is 
located on the scale, one degree of temperature change indicates 
the same amount of thermal energy change in an object. In other 

                                                 
a In fact, we may also use symbols or letters to represent normal data. For 
instance, we can use F to indicate female and M to indicate male.  
b As with nominal data, ordinal data also can be represented by using symbols, 
but these symbols follow a certain hierarchical order. For instance, we may use 
SD, D, N, A, and SA to represent respectively “strongly disagree”, “disagree”, 
“neutral”, “agree” and “strongly agree”. The sequence of these five symbols 
indicates an increasing level of endorsement.  
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words, the difference between 1°C and 2°C is the same as the 
difference between 20°C and 21°C.  

 Ratio data not only has all the properties of interval data, but also 
has meaning for an absolute origin (i.e., 0) and a ratio between two 
values. Mass is a ratio variable. It is legitimate for us to say the 
mass of a proton is 1836 times that of an electron.  
 

In traditional physics, quantitative data is mostly at the level of interval 
and ratio.c This means that we can perform a number of mathematical 
operations with the data, and the subsequent results still hold physical 
meanings. As mentioned above, adding or subtracting temperature 
readings and calculating the ratio of two masses yield meaningful 
outcomes. On the other hand, quantitative data in PER are mostly nominal 
or ordinal; they are seldom interval and never ratio. Strictly speaking, even 
test scores from the Force Concept Inventory (FCI),10 Force and Motion 
Conceptual Evaluation (FMCE),11 Conceptual Survey of Electricity and 
Magnetism (CSEM),12 and Brief Electricity and Magnetism Assessment 
(BEMA),13 to name but a few, do not produce interval data. This is 
because we cannot claim that the difference in understanding of force 
concepts between two students who score 1 and 2 on FCI is the same as 
the difference between another two students who score 20 and 21 on the 
same test.14-16 Nevertheless, researchers often treat test scores like these as 
a close approximation to interval data, if the scores of a student population 
follow a Gaussian distribution. In general, data at the ordinal and nominal 
levels (also known as categorical data) are typically presented in the form 
of frequencies and are subject to non-parametric statistical analysis, 
whereas data at the interval and ratio level (also known as continuous 
data) allow for calculating means and standard deviations and are 
amenable to parametric statistical analysis.17 Simply put, parametric 
statistics assume a normal distribution of the variable in the population 
from which the data is collected. In the case of continuous data, when the 
sample is adequately large, the normality assumption often holds. But 
when it comes to categorical data or continuous data of small sizes, it is 
likely that the normality assumption will be violated. In that case, 
traditional parametric statistical analyses are no longer valid. Since non-
parametric statistics do not assume a normal distribution, they can be used 
in many cases where the traditional parametric statistics are no longer 
appropriate. 

                                                 
c Of course, there are exceptions. For example, electron spin is of discrete states, 
and therefore is not at the interval level. 
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Given the above nature of quantitative data in PER, it is conceivable that a 
satisfactory level of validity and reliability in PER quantitative studies is 
difficult to achieve, perhaps more so than in other areas of physics. Since 
discussion about validity and reliability has been covered in Engelhardt’s18 
introduction to classical test theory, we avoid repetition by referring 
readers to the previous volume for more details. However, we want to 
emphasize that no matter how carefully quantitative data in PER are to be 
measured and analyzed, we can only use observable results to infer what 
we are truly interested in, and oftentimes those that are not directly 
observable are what we are truly interested in. This is why validity and 
reliability in quantitative PER studies are always difficult problems to 
tackle. 
 
1.3 Nature of Quantitative Research Questions 

Depending on the nature of research questions one attempts to answer in 
PER, a researcher may choose to use quantitative techniques in different 
manners. Primarily, the researcher has the following three choices to meet 
his/her needs. One is descriptive use of statistical techniques. This type of 
quantitative techniques is suitable for survey research18 that aims to 
identify and document some universal patterns in a large number of 
subjects. For example, the researcher may want to know, “What is the 
average performance for students at State University X on the Force 
Concept Inventory?” Using descriptive statistical techniques can be 
appropriate for addressing this question. 

The second choice is inferential use of statistical techniques. This is 
particularly useful for experimental/quasi-experimental studies, in which 
individual subjects (in experimental designs) or cohorts of subjects (in 
quasi-experimental designs) are randomly sampled and assigned into 
either a control group or treatment groups.19, 20 By comparing and 
contrasting the different groups, the researcher can make inferences about 
the effectiveness of some treatments. An example research question that 
can be answered by using inferential techniques is, “Do students in 
interactive engagement classrooms hold more expert-like views about 
knowledge and learning, as measured by the Maryland Physics 
Expectations Survey (MPEX),21 than those in traditional classrooms?” The 
third type of quantitative technique is instrument development and 
calibration. These quantitative techniques are regularly used in evaluation 
studies6, 22 to develop measurement instruments that can match a specific 
evaluation plan and to establish validity and reliability evidence for the 
instruments. An example research question that can be answered by this 
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type of study is: “To what extent do the psychometric properties of the test 
items indicate that all questions measure the same construct as they are 
supposed to?” In a previous volume of Getting Started in PER, Engelhardt 
reviewed classical test theory as a tool for developing PER assessment 
instruments. In this article, we briefly discuss Rasch modeling23-26 as an 
alternative quantitative approach to instrument validation. 

More details on these three types of quantitative techniques are expanded 
in the next sections (Sections 2-4). In Section 5, we provide a short 
summary and some suggestions for how to further pursue quantitative 
research methods in PER, as well as in a broader educational research 
context. 

2. Descriptive quantitative methods in survey 
research 

Descriptive statistics are commonly used in survey research to 
quantitatively describe some aspect(s) of interest in large samples of a 
population.27 When preparing for this type of study and selecting 
appropriate quantitative techniques for data analysis, a researcher must be 
clear about the purposes, procedures, and possible issues of his/her work. 
In what follows, we discuss some important items for consideration 
regarding data collection, data analysis, and result interpretation in PER 
survey research. 

2.1 Prepare for data collection in survey research 

Before collecting data, a researcher must have some clearly articulated 
research questions or hypotheses he/she wants to pursue. These questions 
or hypotheses should include specific variables of interest, survey tools, 
and subject samples. 

Variables of interest reflect what a researcher wants to observe or 
measure; for example, the researcher may be interested in investigating 
students’ conceptual understanding of a physics topic or their 
epistemologies about knowledge and learning of physics. But these 
variables are still vague and do not yield immediately observable 
consequences. Therefore, it is crucial to specify a set of observables that 
can be directly measured. In the example of conceptual understanding, the 
researcher may explicitly consider measuring students’ performance 
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(scores) on conceptual questions related to a chosen physics topic. 
However, justification may be needed, through a theoretical framework 
and/or literature review, to support the link between the observables 
(student scores) and the unobservable variables (student conceptual 
understanding). 

Once variables of interest are clearly defined, the researcher then needs to 
consider how to carry out the measurement. A key aspect is to find an 
appropriate survey tool that can serve the purpose of measuring the 
variables of interest. A number of survey instruments and concept 
inventories have been created within science education in general and 
physics education in particular. They cover a wide range of topics, 
including content learning, general reasoning skills, and epistemologies. A 
researcher can select appropriate instrument(s) to best suit his/her needs.d 
Another important aspect for consideration is to specify the context under 
which a survey is used. Depending on the research goals, a survey can be 
given at different time points, for example, before instruction, during 
instruction, or after instruction. It can be administered as a paper-and-
pencil test, a mail-in questionnaire, an online poll, or in other forms such 
as interviews. Given the wide variety of ways for using a survey tool, a 
researcher must think through the options carefully before collecting data. 

Also crucial is to identify with whom a measurement is conducted. This 
relates directly to subject samples in a study. Since quantitative results 
acquired from survey research should ideally reflect the patterns of a 
population, it is useful to choose representative samples for data 
collection. Some important factors for consideration include the role of 
subjects (learners, educators, parents, researchers, administrators, policy 
makers, etc.), the number of subjects, their academic background, age, 
gender, ethnicity, nationality, and other factors that may be relevant to the 
research questions one seeks to answer. 

2.2 Select appropriate statistical techniques for data analysis in survey 
research 

                                                 
d If no suitable survey tools exist, one needs to develop his/her own measurement 
instrument. Section 4 introduces Rasch modeling as a useful quantitative 
approach to instrument development and validation. Readers can also refer to 
reference 18 for more details on instrument validation through the classical test 
theory. 
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After data are collected, a researcher needs to carefully select appropriate 
statistical techniques for analysis. Common methods used in descriptive 
statistics include analyzing the mean and median, standard deviation and 
standard error, standard scores, correlation, and regression. Except for 
correlation and regression, which require two or more sets of data, all 
other statistics can be used to descriptively analyze one data set. In the 
following, we first discuss the methods for one-data-set situations and then 
discuss correlation and regression. 

2.2.1 Descriptive analysis for one data set 

Mean and median perhaps are the most commonly used statistics for 
describing a set of data collected from a survey. For data at the 
interval/ratio level, estimating a mean is simply calculating the arithmetic 
average. Note that we can perform addition and subtraction with data at 
the interval/ratio level, so calculating means makes sense. The median is 
the middle number for a string of data that are arranged in the order of 
increasing or decreasing values. Depending on the data distribution, a 
median can be close to or far from a mean. If the two are close in value, 
then the data distribution is somewhat symmetric. Otherwise, the 
distribution is skewed. 

Because nominal/ordinal data have limitations on what mathematical 
operations can be performed, calculating mean values may not be suitable 
for nominal/ordinal data. For instance, we may assign a number, say, 1, 2, 
3, or 4—a set of nominal values—to each student in four classes that adopt 
different pedagogies. In this case, it makes little sense to calculate a mean 
of the assigned numbers among students. For ordinal data it is also 
problematic to analyze means. Consider a case where we have four 
cohorts of equal numbers of students at different grade levels—grade 2, 5, 
8, and 10. While it is logical to say that grade 5 is higher than grade 2, it 
certainly is awkward to say that the average grade level for these students 
is 6.25. That said, in practical applications ordinal data are often 
approximated to interval data if a normal distribution is assumed. As 
mentioned before, researchers in PER frequently take test total scores on 
most PER assessments as interval data. However, caution is needed when 
it comes to survey questions that use rating scales. Unless the range of 
rating points is sufficiently wide to allow a possible normal distribution, 
approximation to interval data in most cases may not be appropriate (see 
Section 4.1 for more details). For example, when analyzing the Colorado 
Learning Attitudes about Science Survey (CLASS) to investigate student 
epistemological beliefs, Adams et al. carefully avoided using ordinal-level 
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raw data for direct calculation, and instead they collapsed student ratings 
into two categories and calculated percentages of student responses that 
matched experts’ responses for quantitative analysis.9 

Standard deviation and standard error both reflect fluctuations in data. 
However, they contain different meanings. Standard deviation is a 
measure of variation in the sample from which the data is collected, 
whereas standard error is an estimate of the accuracy for using a sample 
mean to represent a population mean. Typically, the larger the sample is, 
the better the estimate for the population is, and therefore the smaller the 
standard error is. It follows that the standard deviation (S) and standard 
error (σ) are related by a factor of the square root of N, where N is the 
number of subjects in the sample: 

.  
It is worth noting that for the same reasons as mentioned above, the 
standard deviation and standard error are suitable for interval/ratio data but 
may not be so for ordinal/nominal data. 
 
Standard scores, also known as Z scores, are used to convert raw data into 
another form that can indicate how many standard deviations each 
individual data point is above or below the mean. This conversion can 
allow a researcher to have a firm grip of the relative position of the data 
points. Standard scores are calculated by taking the difference between 
each data point (x) and the mean (µ), and then dividing it by the standard 
deviation (S): 

  
Typically, if a set of data follow a normal distribution,e the standard scores 
are referred to as Z scores. Otherwise, we call them t scores. Again, 
standard scores are suitable for interval/ratio data, but may not be 
appropriate for ordinal/nominal data. 

What, then, is appropriate for ordinal/nominal data? Descriptive statistics 
for ordinal/nominal data is often in the form of frequencies. One approach 
researchers often use is to calculate the percentages of different categories 
for data at the ordinal/nominal level. For instance, in order to examine the 

                                                 
e One can plot a histogram to visually check if the data follows a normal 
distribution (a bell-shaped, symmetrical curve). If a more definitive answer is 
needed in judging the normality, one can use the Kolmogorov-Smirnov test for 
goodness of fit. See reference 17 for more details.  
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gender distribution in a class, a researcher can count the numbers of male 
and female students and then calculate the percentages to find out the 
distribution. If multiple ways to categorize the same sample of subjects 
exist, as is often the case, a researcher may consider using a contingency 
table or a matrix to represent data distribution. For example, a researcher 
may wish to know student distributions in terms of both gender and 
ethnicity. In this case, a table with rows and columns showing gender and 
ethnicity respectively can help facilitate this type of data analysis. (See 
Figure 1.) Such a table is often called a contingency table.28 
 
 
 
 
 
 
 

Figure 1: A Contingency Table with Rows and Columns  
Indicating Gender and Ethnicity, Respectively 

2.2.2 Descriptive analysis for two or more data sets 

Correlation is another common descriptive statistical technique. It is used 
to analyze the relationships between two sets of data. For interval/ratio 
data, we often choose the Pearson coefficient to measure the extent to 
which two sets of data are linearly related. In PER, this technique is 
frequently adopted to investigate how students’ performances on two 
different assessments correlate with each other. For instance, Thornton et 
al. administered both the FCI and Force and Motion Conceptual 
Evaluation (FMCE) to approximately 2000 students in a studio physics 
course at Rensselaer Polytechnic Institute.29 Student scores on both 
assessments were taken as interval data and used for calculating a Pearson 
correlation. Results showed despite the differences in content coverage 
and the number of questions per topic in the two tests, there was a strong 
positive correlation (r = 0.78, out of a maximum of 1) between the FMCE 
and FCI scores, indicating that there is a large overlap in what is measured 
by the two tests. 

It is worth noting that for data at the ordinal or nominal levels, the Pearson 
correlation is no longer a suitable statistic. Instead, one has to use other 
measures. For ordinal data, one may consider using Spearman’s Rho (ρ) to 
calculate correlation.30 This approach generates a rank order correlation to 
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examine if a high ranking in one ordinal data set corresponds to a similar 
ranking in the second ordinal data set. As for nominal data, calculation of 
correlation goes beyond the scope of descriptive statistics and in fact 
alludes to inferential statistics, such as the Chi-square statistic used for 
testing association. We defer relevant discussion to Section 3. However, 
when it comes to special cases in which two sets of nominal data are both 
dichotomous (either 1 or 0), one can use Phi (φ) to calculate correlation—
a simplified Pearson correlation for dichotomous data.31 For example, 
Heller and Huffman used this method to calculate Phi correlations 
between dichotomously scored FCI items.32, 33 Based on these correlations, 
they performed a principle component analysis to check if the FCI items 
fall under six dimensions of content topics as claimed by the FCI 
designers. 

A final caveat on correlation is that it is often sensitive to sample sizes and 
therefore, when reporting a correlation, researchers may also need to 
include its significance level to show if it is statistically meaningful, given 
the sample size. The topic of testing significance involves inferential 
statistics. See Section 3 for more details on inferential quantitative 
techniques.  

Regression analysis is an extension of correlation analysis and involves 
two or more data sets. This analysis looks into the relationship between a 
dependent variable (DV) and one or more independent variables (IVs) so 
as to model how the DV is affected by the IVs. Among various types of 
relationships, linearity is the simplest one; it means that a change in each 
IV is directly proportional to a change in the DV. Graphically, such a 
relation can be represented by a straight line. Results of linear regression 
analysis can reveal the strength (correlation coefficient squared) as well as 
the magnitude (slope of a regression line) of the relationship between the 
DV and each IV. It is worth noting that strength and magnitude are two 
different concepts. Strength reflects how much variance in the DV can be 
accounted for by the IVs, therefore indicating the degree to which the 
relationship between the DV and IVs can be modeled by a linear 
regression. Magnitude, on the other hand, reflects how the size of a change 
in the DV is affected by every unit change in each IV, regardless of 
whether a linear relationship is warranted or not. Sometimes, the 
magnitude of the relationship between the DV and each IV is small (small 
slope of a regression line), but the strength of a linear relationship between 
them is high (all dots in a close proximity to the line), or vice versa. 
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In physics education research, linear regression is frequently used to 
describe how a variable of interest changes with other variables. For 
instance, Kortemeyer34 studied the relationship between students’ 
approaches to physics, as measured by their online discussion behaviors, 
and learning outcomes measured by student FCI scores. In this study, 
Kortemeyer used FCI posttest score as a dependent variable, and FCI 
pretest score and percentages of student solution-oriented behaviors in 
online discussion as two independent variables. Student solution-oriented 
behaviors were identified as discussions that focused on getting a correct 
answer without dealing with the deep physics of a problem. By conducting 
a linear regression analysis, Kortemeyer found the following relation: 

Post FCI = 7.606 + 0.857  Pre FCI + (–0.042)  Solution-oriented 
Behaviors 

 
with 47.9% of the variance in “Post FCI” accounted for by “Pre FCI” and 
“Solution-oriented Behaviors.” As pointed out by the author, the negative 
slope of –0.042 indicated that for every 10% increase in solution-oriented 
discussion student posttest FCI score would decrease by 0.42 points, 
controlling for the FCI pretest score. 

As for nonlinear regression, it is beyond the scope of basic descriptive 
statistics, so we only give it a passing note. In PER, nonlinear regression 
analysis is not often used. One of a few examples is a study conducted by 
Henderson et al.35 They applied logistic regression to seek the relationship 
between physics instructors’ knowledge of research-based instructional 
strategies and 20 independent variables. Readers can refer to the original 
paper for more details. Another case that utilizes nonlinear regression is 
Rasch modeling. Details about Rasch modeling and its roots in logistic 
regression are briefly introduced in Section 4. 

2.3 Interpret analysis results in survey research 

Although descriptive statistics are fairly straightforward, interpretation of 
analysis results still calls for attention. It is important to remember that 
while the ultimate purpose of applying descriptive analysis is to make 
generalizations about some aspects of a population, what a researcher has 
at hand is information about a sample that is hopefully representative of 
the population. One must be mindful of this gap. When interpreting 
descriptive statistics, make sure to attend to sample characteristics such as 
the number of participants, their backgrounds, and the context in which 
the study is conducted. Where possible, discussions on issues, such as 
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whether using an alternative similar survey tool will lead to comparable 
results, are also helpful. 

A particular note worth mentioning here is that when dealing with 
correlation, one should not confuse it with causation. A high correlation 
can be due to various reasons, including some spurious relationships 
between two sets of variables, and it does not necessarily indicate a causal 
relationship. On the flip side, without controlling for confounding factors, 
even causally related variables can have a rather low correlation, so 
caution is needed in interpreting correlation statistics. 

3. Inferential quantitative methods in 
experimental/quasi-experimental studies 

 
Experimental and quasi-experimental studies in PER allow a researcher to 
make claims about the effect of some treatment or intervention through 
comparisons between two or more events. If such comparisons involve 
quantitative analyses, inferential statistics then become a useful tool for 
these types of studies.27 Since appropriate use of inferential statistics in 
experimental/quasi-experimental PER is inseparable from careful research 
designs, we discuss in this section three perspectives, relating to data 
collection, data analysis, and data interpretation respectively. 
 
3.1 Prepare for data collection in experimental/quasi-experimental 

studies 

In addition to those noted in survey research, (quasi)experimental studies 
have unique requirements that one needs to take into consideration before 
starting data gathering. A key issue to bear in mind is that variables of 
interest need to be clearly specified and be kept separate, as much as 
possible, from other variables of non-interest that may exert influences on 
the outcomes. For instance, a researcher may want to compare student exit 
performance on FCI as a result of two different physics instructions—
traditional vs. interactive instruction. Conceivably, there are many factors 
other than instruction types that can influence student FCI scores. 
Therefore, it is crucial that a comparison is made between two groups of 
students who have similar academic backgrounds and receive comparable 
treatments other than different instruction. As such, a difference in student 
FCI scores, if any, can then be attributed to the difference in instruction 
with a high degree of confidence.  
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To ensure that subjects in different groups are comparable and only differ 
in the variables of interest, a researcher can take several measures. One 
way is to randomly assign subjects into groups. In an ideal experimental 
design, each individual is randomly assigned either into a control group or 
a treatment group, and the positive and negative effects in each variable of 
non-interest will hopefully cancel each other out due to randomness.36 
However, in reality a researcher does not always have the luxury to do so, 
as assigning human subjects differs vastly from preparing material 
samples that can be at the researcher’s disposal. Oftentimes, our human 
subjects in PER are constrained by certain boundary conditions, such as 
classes, schools, and districts. So, in quasi-experimental designs we 
randomly assign each class, school, or district rather than each individual 
into different groups.36 In this case, it is useful to conduct a priori 
comparisons between the groups on some variables that the researcher 
suspects may cause some confounding results—results that are considered 
as undesirable because of variables beyond the researcher’s control. As an 
alternative to a priori comparisons, a researcher may choose to use post 
hoc comparisons to check if the groups he/she has studied are comparable. 
However, post hoc comparisons run risks of being unable to salvage an 
otherwise rescuable study if a priori comparisons were conducted and 
necessary re-assignments of subjects were carried out beforehand.  

Before starting data collection for a (quasi)experimental study, a 
researcher also needs to pre-determine a significance level, an expected 
effect size, and/or the number of subjects needed for meeting this effect 
size and the significance level. In inferential statistics, a comparison 
between groups is always framed in a pair of hypotheses consisting of a 
null hypothesis (H0) and an alternative hypothesis (Ha).

8 The null 
hypothesis states that there is no significant difference between the groups 
at the level of α, and conversely the alternative hypothesis states that there 
is a significant difference. Here α is what we call a predetermined 
significance level, indicating the maximum probability of getting a 
statistic (z-value, t-value, F-value, Chi-Square, etc.) less than what is 
found in the data. A commonly used value for α is 5%, which is equivalent 
to an odds of 1 out of 20. Note that the 5% alpha value is merely a 
convention; a researcher should choose a significance level most suitable 
for his/her research design (also see Section 3.3 for more discussions). 

When deciding on which hypothesis to accept or reject, a PER researcher 
can potentially make two types of errors. One is called Type I error, which 
overestimates the significance of a difference by mistakenly rejecting the 
null hypothesis (H0). The probability of making this type of error is the 
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same as the significance level of a statistic test α. The other is Type II 
error, which underestimates the significance of a difference by failing to 
reject the null hypothesis (H0). We use β to indicate the probability of 
making a Type II error. Conceivably, 1- β indicates the probability of 
making a correct claim of a significant difference by correctly rejecting a 
null hypothesis, and hence it is also called the power of a statistic test.  

While a difference found between groups may be significant, it can take 
on various sizes of magnitude. The magnitude of a difference is often 
referred to as effect size.37 In the case of a 2-group comparison, for 
example, effect size is calculated as the difference between the means of 
the two groups divided by the standard deviation of one group (usually of 
the control group) or both groups. According to Cohen,37, 38 a difference of 
an effect size less than 0.2 in the 2-group comparison case is considered as 
small, between 0.2 and 0.8 as medium, and greater than 0.8 as large. 
(More information on effect size for other types of comparisons can be 
found in references 37 and 38.) Sometimes a small difference can be 
statistically significant; whereas other times a large or medium difference 
shows no statistical significance at all. These occurrences have much to do 
with the sample sizes involved in a comparison. If a significant difference 
is anticipated due to some theory-laden framework, then a researcher 
needs to be sure that the samples he/she has in the study are sufficiently 
large to be able to detect such a difference. On the other hand, too large of 
a sample is unnecessary and can be a waste of time and resources. So, a 
priori analysis is often needed to calculate the minimally sufficient sample 
size for each group. With a pre-determined significance level and a desired 
effect size, a researcher can determine the number of subjects in each 
group needed to carry out the study. There are several free online 
programs that can help researchers perform a priori calculations; these 
include G*Power analysis37 and A Priori Sample Size Calculator.39  

3.2 Select appropriate statistical techniques for data analysis in 
experimental/quasi-experimental studies 

Depending on the goals and the design of an experimental PER study, a 
comparison can be made either at different time points with the same 
sample of subjects or across different samples at the same time. Since the 
statistical techniques required in these two types of comparisons are 
different, we discuss them separately. 

3.2.1 Inferential statistics for comparisons of one sample over time 
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Experiments or quasi-experiments in PER sometimes require a researcher 
to take measurement of the same sample at two different time points, 
between which some type of treatment or intervention is implemented. By 
making comparisons between the measurements at the two times, a 
researcher can study the effect of the treatment or intervention. Common 
techniques for carrying out this kind of comparisons include the repeated 
t-test and the McNemar test. 

Repeated t-test, also called a paired t-test, is suitable for data at the 
interval/ratio level. It is an extension of the one-sample t-test (or univariate 
t-test) that is used for comparing the mean score of a sample with a 
specific number. In a repeated t-test, there are two sets of data associated 
with a single sample, measured respectively before and after a treatment 
(called “pre” or “post” hereafter as a shorthand). The pre and post data 
should be matched for each subject, and those with missing data need to 
be deleted. The difference between each matched data pair, also known as 
“gain” (gain = post score – pre score), is key to a repeated t-test. By 
comparing the “gains” with zero, a researcher can choose between a null 
hypothesis (H0) stating there is no significant difference between the pre 
and post measurements, or an alternative hypothesis (Ha) suggesting 
otherwise. 

The repeated t-test produces a statistic that has a symmetric bell-shaped 
distribution (slightly more spread out than a normal distribution) and is 
called the t statistic. The spread of the t distribution is dependent on the 
degree of freedom (df) which simply is the maximum number of values in 
the data that are allowed to vary. In a repeated t-test, the degree of 
freedom is equal to the total number of subjects minus one (N-1). 
Associated with the t statistic and degree of freedom is a p value. It 
reflects the probability of obtaining a t statistic with a value no greater 
than what is found in the data. If the p value is smaller than a pre-
determined significance level (α), then a researcher can claim that the 
“gains” are statistically different from zero; in other words, the difference 
between the pre and post data is significant. This detected significance 
may allow a researcher to further claim that some treatment implemented 
between the two measurements has produced statistically meaningful 
effects—effects not due to measurement error—on the variable of interest 
(for example, student performance on a physics assessment). Otherwise, 
the treatment has yielded little measurable effect. 

An important assumption about the repeated t-test (and in fact about any t-
test) is that the population from which the sample is randomly selected 
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follows a normal distribution on the measured variable. Typically, a 
repeated t-test is robust if a sample contains 30 or more subjects. In the 
case of smaller samples for which a normality assumption does not hold, 
one may consider using the Wilcoxon signed rank test40, 41—a non-
parametric version of the repeated t-test—for conducting paired 
comparisons. 

In PER, this type of study is frequently used to investigate changes in 
student learning over time. For instance, Pollock42 conducted a 
longitudinal study to measure changes in student conceptual learning over 
a period of 3 years. In this study, all students first took a tutorial-based 
introductory physics course on electricity and magnetism (E&M)—
namely Physics II—during their freshman year. A subset of the students 
(N = 38) then took two upper-division physics-major E&M courses—
namely Physics 301 and Physics 302—during their junior year. Pollock 
administered BEMA as both a pre and a post test before and after each of 
these courses. In an effort to study knowledge retention during the period 
between Physics II and Physics 301 courses, Pollock used a repeated t-test 
to compare student post-Physics-II BEMA scores with their pre-Physics-
301 BEMA scores and found a 5% decrease in student performance. 
Although this is a small decrease compared to what has been reported in 
educational-psychological studies in a relatively long time period, Pollock 
still found it to be statistically significant at the p = 0.01 level.  

In addition to using gains (arithmetic differences between pre and post 
data) to express growth (or decrease) over time, researchers in PER also 
calculate “normalized gain”.43 This is defined as the ratio between an 
actual change and a potential maximum change: 
 

 
 
An actual change is the same as a gain (gain = post score – pre score), and 
a potential maximum change is calculated as the difference between a 
perfect score and a pre score (maximum change = full score – pre score). 
Since its first introduction to PER by Hake,43 normalized gain has been 
widely adopted. Researchers often use normalized gains (or gains) for 
direct comparison with zero to examine if there is a significant change 
between student pre and post performances.  

McNemar test is a statistical technique suitable for repeated measurements 
that involve categorical (nominal/ordinal) data with only two possible 
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values (either 0 or 1, for example). As with a repeated t-test, data in 
McNemar tests must be matched for each subject, and those with missing 
data need to be deleted. This test focuses on the changes between two 
measurements of the same sample (i.e., changes from 0 to 1 and from 1 to 
0) but ignores those that do not show change (see Figure 2). Based on the 
numbers of such changes, the McNemar produces a Chi-square statistic 
(χ2) and an associated p value. If the p value is smaller than a prescribed 
significance level (α), it suggests that the difference between the two 
measurements is significant. The degree of freedom (df) for the McNemar 
test is always 1. 
 
 
 
 
 
 
 
 
 
 

Figure 2: McNemar Test for Repeated Measurement--a Pretest and a 
Posttest on a Dichotomously Scored Item--for the Same Sample 

Note that the McNemar test differs from the univariate Chi-square test, 
although both are used for testing categorical data of one sample. The 
former is only suitable for comparing matched data of repeated 
measurements; whereas the latter is used to test whether the categorical 
data of a single measurement follows an expected distribution. Data in the 
McNemar test must be binominal, whereas data in the univariate Chi-
square test can have multiple categories/levels. One advantage of a 
McNemar test is that it essentially is a nonparametric test, so it can be 
used for analysis of small samples. 
 
In PER, the McNemar test is particularly useful for comparing students’ 
performances on questions that are dichotomously scored (1 for correct 
and 0 for incorrect). For instance, Stewart, Griffin, and Stewart44 
administered two versions of 10 selected FCI questions to over 650 
students, one being the original FCI version and the other containing 
modified questions with altered contextual features. Each student in this 
study completed both versions and had two scores. Specifically, half of the 
students took the original FCI first before taking the modified version, and 
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the other half did the reverse. As such, the order effect was reduced. To 
investigate the effect of change in question context on student responses, 
the authors conducted a McNemar test for the 10 questions and found that 
the difference in student performance on the two versions was significant 
at the p ≤ 0.01 level for all the 10 questions. This result prompted the 
authors to think that the context change could have noticeable influences 
on students’ responses to individual multiple-choice questions. 
 
3.2.2 Inferential statistics for comparison of two or more samples 

 
When it comes to comparisons between two or more samples, a typical 
scenario is that one sample is a control group, designed to be a baseline, 
and the others are experiment groups in which subjects receive different 
degrees of some treatment or intervention. By comparing these groups, a 
researcher can make inferences about the effect of the treatment or 
intervention. Common techniques for inferential statistics include the two-
sample t-test, one-way ANOVA (F-test), two-way ANOVA (F-test), 
ANCOVA (F-test), Chi-square test, and multi-way frequency test. 
 
Two-sample t-test is a useful technique for comparing two independent 
samples. Assuming that the two samples differ in some aspect of interest 
but are comparable otherwise, we can test a hypothesis regarding whether 
or not the difference between them is significant. This test produces a t 
statistic and an associated p value. The degree of freedom of this test is 
equal to the total number of subjects minus two (N-2). 

It is worth stressing that in practical application the two-sample t-test can 
be easily confused with a repeated t-test. Sometimes researchers 
mistakenly use a two-sample t-test for comparing data that are collected 
from a single sample. To avoid this common error, make sure to double-
check that the data are collected from two separate samples. If not, the 
two-sample t-test is not an appropriate choice. For example, in 
longitudinal studies data collected from the same group of students at two 
different time points should be analyzed by using a repeated t-test, not a 
two-sample t-test. Another important aspect about the two-sample t-test 
relates to its assumptions about the population and samples. Similar to the 
repeated t-test, the two-sample t-test assumes that the populations from 
which the samples are randomly selected are normally distributed. 
Additionally, the variances and standard deviations of the two independent 
samples are assumed to be equal. Generally, a two-sample t-test is a robust 
test when the sample size is reasonably large (n ≥ 30). In the case of small 
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samples, one may consider using the Mann-Whitney test40, 41—a 
nonparametric alternative—for making two-group comparisons.  

In PER, the two-sample t-test perhaps is the most frequently used 
technique for comparing two independent groups of subjects. For 
example, Day and Bonn45 developed a Concise Data Processing 
Assessment (CDPA). In order to examine how this assessment could be 
used to distinguish different populations, they administered CDPA to 
undergraduate students, graduate students, and faculty and conducted a 
series of t-tests to compare their scores. Results showed that there was a 
significant difference in CDPA scores between 1st year and 4th year 
undergraduate students, between 4th year undergraduates and faculty, and 
between graduate students and faculty (with all p values < 0.001). 
Additionally, there was a significant difference in student scores between 
the 1st year and 2nd year undergraduates who did not receive instruction on 
data processing in their previous lab courses (p < 0.001). Given these 
results, the authors came to a conclusion that the CDPA can be used for 
separating different populations along the novice-to-expert spectrum with 
regard to their data processing abilities. 

ANOVA (F-test) is an abbreviation for “analysis of variance.” It 
essentially is a significance test that uses the F distribution—a right-
skewed continuous distribution—to detect differences among two or more 
groups of subjects. The null hypothesis (H0) of an ANOVA test is that the 
means of all groups are equal, and the alternative hypothesis (Ha) is that at 
least two groups have different means. ANOVA calculates both within-
groups variance and between-groups variance. Simply put, within-groups 
variance reveals how data points in each group disperse from their mean, 
whereas between-groups variance shows how far apart the groups spread 
from each other. Conceivably, if the dispersion within each group is 
noticeably smaller than the spread among the groups—in other words, if 
within-groups variance is considerably smaller than between-groups 
variance, then the difference among the groups becomes fairly evident. 
Otherwise, it can be difficult to detect differences among the groups. This 
idea is strikingly analogous to an imaging system’s resolution ability in 
optics. Recall that Rayleigh calculated the ratio of wavelength to 
aperture’s diameter as a measure for angular resolution. Similarly, 
ANOVA uses the ratio of between-groups variance to within-groups 
variance as a measure (F statistic) to determine if these groups are too 
close to be called different. 
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Depending on the number of independent categorical variables involved, 
there are different types of ANOVA, namely one-way ANOVA, two-way 
ANOVA and multi-way ANOVA. In one-way ANOVA, what is being 
compared (dependent variable at the interval/ratio level) is considered to 
be a function of only one categorical predictor (independent variable). So, 
comparisons are only made between the different categories of this single 
independent variable. For instance, Smith and Wittmann46 attempted to 
compare student performance on the FMCE among three different tutorial-
based curricula, namely Tutorials in Introductory Physics,47 Activity-
Based Tutorials,47 and Open source Tutorials.48, 49 They used the student 
FMCE score as a dependent variable and curriculum as an independent 
variable that contained three categories (classes). By using one-way 
ANOVA, a comparison of student FMCE scores therefore was made 
across these three categories (classes) of the independent variable.  

In two-way ANOVA, what is being compared is a function of two 
categorical variables; for instance, a difference in student reasoning 
abilities may be accounted for by both curriculum and gender. In this case 
comparisons need to be made between the different categories of both 
independent variables, namely a comparison among classes that use 
different types of curricula (Class-1, Class-2…Class-g), as well as a 
comparison between the two genders (male and female). The purpose of 
these comparisons is to detect the main effects of the two independent 
variables. In practice, before testing the main effects, it is helpful to detect 
if there is any interaction between the two independent variables. (See 
Figure 3.) 

 

 

 

 

 

 

Figure 3: Two-way ANOVA Testing Both Main Effects and Interactions 
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An absence of interaction implies that the effect of either independent 
variable on the dependent variable is consistent for the different categories 
of the other. For instance, suppose that there is no significant interaction 
between the two independent variables, curriculum and gender. This 
means that the difference (be it small or large) in the dependent variable 
(student reasoning ability, for example) between male and female is 
constant across all the classes. Similarly, the differences in the dependent 
variable among all the classes remain constant for both genders as well. 
This absence of interaction allows us to proceed with comparisons for 
main effects. Otherwise, we have to compare each combination of class 
and gender separately, as the broad-brush comparisons for main effects do 
not yield interpretable information. In multi-way ANOVA, what is being 
compared is a function of three or more independent variables. Since the 
basic ideas behind multi-way ANOVA are the same as those for two-way 
ANOVA, we omit further discussion. 

In cases of two or more dependent variables, ANOVA becomes 
multivariate ANOVA or MANOVA. The underlying core ideas for 
MANOVA are similar to those for ANOVA, but the interpretation of the 
effect on the dependent variables will be based on a composite variable. 
Due to space limits, this analysis is not further discussed in this article. 
Readers can see reference 8 for more details. 

One-way ANOVA has two degrees of freedom, one for between-groups 
and the other for within-groups. The between-groups degree of freedom is 
the number of groups minus 1 (df between = g – 1), and the within-groups 
degree of freedom is the total number of subjects minus the number of 
groups (df within = N – g). If there happen to be only two groups in the 
independent variable, then one-way ANOVA is equivalent to the 
aforementioned two-sample t-test, and the F statistic is simply equal to the 
t statistic squared (F = t 2 for two groups).8  

In two-way ANOVA, there are three degrees of freedom for between-
groups (df between) and one degree of freedom for within-groups (df within). 
Suppose there are g1 groups in the first independent variable and g2 groups 
in the second independent variable. The between-groups degree of 
freedom is g1-1 for the main effect of the first independent variable, g2-1 
for the main effect of the second independent variable, and (g1-1) × (g2-1) 
for the interaction between them. The within-groups degree of freedom is 
the total number of subjects minus the product of g1 and g2 (df within = N – 
g1×g2). 
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Like any other statistical test, ANOVA has its own assumptions. Ideally, 
subjects need to be randomly selected and hence are representative of the 
populations. Also, the population for each group is assumed to follow a 
normal distribution, and the standard deviation is the same for each group. 
These are fairly strict assumptions, so in reality they are rarely satisfied. 
Practically, a researcher in PER should strive for random selection of 
subjects, because this is considered as the most important condition for a 
valid ANOVA. Sometimes a researcher may encounter a situation in 
which the number of subjects in each group is small and the normality 
assumption may not be legitimate. In cases like this, one may consider 
using the nonparametric Kruskal-Wallis40, 41 test as an alternative to one-
way ANOVA, and using the nonparametric Friedman’s test40 as an 
alternative to two-way ANOVA.f 

In PER, one-way and two-way ANOVA are frequently used for 
comparing among multiple groups. In a study conducted by Ding et al.,50 
the CSEM was administered as both a pre and posttest to 1535 students 
enrolled in a calculus-based introductory electricity and magnetism course 
during a two-year period. These students were from various traditional 
classes taught by nine instructors using two different textbooks and two 
different homework delivery systems. In order to test whether or not 
student performance on the CSEM was different between these nine 
classes, the authors conducted a one-way ANOVA and found that there 
was no significant difference between these classes in the pretest scores, 
posttest scores, gains, or normalized gains (with all p values > 0.47). The 
authors concluded that despite the variations in instruction, traditional 
classes generated more or less the same results on student conceptual 
learning of electricity and magnetism topics measured by CSEM. This 
result allowed the authors to combine the nine classes into one group for 
subsequent aggregate analysis. 

Two-way ANOVA is also a commonly used quantitative method in PER. 
For example, Chen et al. studied the effects of online homework and 
interactive engagement instruction on students’ conceptual learning, 
measured by the Force Concept Inventory.51 Two categorical independent 
variables—homework and instruction—were considered. In the homework 

                                                 
f It is worth noting that Friedman’s test was originally designed for 
nonparametric analysis of variance involving multiple repeated measures. (Note 
that its difference from the repeated t-test lies in the fact that the aforementioned 
repeated t-test can only deal with 2 repeated measurements.) In repeated 
ANOVA, “subjects” are considered as an additional independent variable. 
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variable, there were two groups: online homework (OHW) and ungraded 
homework (UHW). In the instruction variable, there were also two 
groups—interactive engagement (IE) and non-interactive engagement 
(NIE). The authors first used student pre-instructional FCI scores as a 
dependent variable for a two-way ANOVA and found no significant 
interactions between the two independent variables and no significant 
main-effects either. Then the authors used student FCI normalized gains as 
a dependent variable for a two-way ANOVA. This time they detected a 
significant interaction between the two variables (with a p value at the 
order of 10–6), suggesting the combined effect of online homework and IE 
instruction (positively) influenced student learning gains.  

ANCOVA (F test) is an acronym for “analysis of covariance.” It is a 
useful technique for analyzing data from quasi-experimental research 
designs. At the heart of this analysis is a combination of regression and 
ANOVA. Recall that the independent variables involved in ANOVA are 
categorical. While keeping these independent variables, ANCOVA adds 
an additional continuous (interval/ratio) predictor—often referred to as 
covariate—and assumes a linear relation between this covariate and a 
dependent variable. This covariate allows researchers to control for a 
quantity that they suspect has influence on the dependent variable. For 
example, a researcher may wish to compare student performance on a 
physics assessment across different classes that use differing pedagogies. 
However, he/she suspects that math skills may play a key role in the 
difference of students’ physics assessment scores. In this case, the 
researcher can use ANCOVA for comparison by taking student math 
examination scores as a covariate and the class as a categorical predictor. 
Note that more than one covariate can be introduced to ANCOVA. 
However, for simplicity, we only discuss the situation of one covariate 
with one categorical variable, which is also known as one-way ANCOVA. 

ANCOVA tests the same hypotheses as ANOVA, along with some more. 
One additional hypothesis in ANCOVA relates to the covariate; it tests 
whether or not there is a linear relationship between the dependent 
variable and the covariate. Additionally, ANCOVA tests if there is any 
interaction between the covariate and other categorical variables. In the 
absence of interaction, the regression lines between the dependent variable 
and the covariate are parallel for all the groups of each categorical 
predictor. In other words, the differences among the groups are constant 
regardless of the value of the covariate. For instance, in the above example 
where the researcher introduces math examination scores as a covariate, if 
he/she finds there is no significant interaction between the covariate (math 
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score) and the categorical variable (class), then the regression lines for all 
the classes are more or less parallel to each other. (See Figure 4.) This 
means that the differences between these classes are constant when 
controlling for student math examination scores. Otherwise, these 
regression lines are not all parallel, or to put in another way the differences 
between the classes are not constant. Typically, the significance of 
interaction should be tested first before one proceeds with other tests. If no 
significant interaction is detected, then a researcher can continue with 
what is discussed in ANOVA for subsequent tests. Otherwise, he/she may 
consider plotting regression lines to get a visual impression of how the 
covariate and the categorical variable interact. Such a plot is often called 
an interaction plot (see Figure 4). 

 
 
 
 
 
 
 
 
 
 (a)        (b) 

Figure 4: Interaction plots. (a) No interaction  (b) with interaction 

In one-way ANCOVA, the degree of freedom for testing the covariate is 
always equal to 1 (dfcovariate = 1). For testing interaction between the 
covariate and each categorical predictor, the degree of freedom is equal to 
the number of groups for that predictor minus one (df interaction = g – 1). 
Since ANCOVA has introduced a covariate as an additional independent 
variable, its within-groups degree of freedom is one less than that of 
ANOVA (df within = N – g – 1). The between-groups degree of freedom 
remains the same as that of ANOVA (df between = g – 1).  

ANCOVA makes the same assumptions about the population data as 
ANOVA. As usual, random selection of samples and normal distribution 
of data are important assumptions to consider. In the case of small samples 
in which the normality assumption does not hold, a researcher may 
consider using a nonparametric rank analysis of covariance as an 
alternative.52, 53 
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In PER, ANCOVA is a useful technique for correcting pre-instructional 
differences among students when making comparisons (therefore suitable 
for quasi-experimental design). Brewe et al.54 implemented physics 
Modeling Instruction for five years at an ethnically diverse university. In 
order to investigate whether or not this instruction equally benefitted 
students of different ethnicity and gender, the authors looked into 
students’ conceptual learning measured by the Force Concept Inventory. 
Based on the literature, the authors believed that the difference in student 
math background could account for differential learning in physics. So 
they conducted two ANCOVA tests, using respectively gender 
(male/female) and ethnic representation (majority/minority) as a 
categorical independent variable. Both ANCOVA tests involved SAT I-
Math scores as a covariate, and post FCI scores as a dependent variable. It 
was found that after controlling for the SAT I-Math scores, no statistical 
difference in post FCI performance was detected between the two ethnic 
representation groups, but there was a significant difference between male 
and female students. The authors inferred that Modeling instruction was a 
step toward greater equality in physics education, but at the same time 
more improvement could be made.  

Chi-square test can be used to test if the frequency distributions across 
different groups of one variable remain the same for each group of a 
second variable. Both variables in a chi-square test need to be categorical, 
containing two or more mutually exclusive groups. (For instance, male 
and female are generally considered as two mutually exclusive groups in 
the variable of sex.) If the distributions of one variable are identical for 
each group of the other variable, then the two variables are called 
statistically independent. For example, a researcher may wish to study if 
the distributions of student majors in three physics classes are the same. 
For convenience, she divides student majors into three categories 
“physical sciences,” “life sciences” and “engineering.” If the distributions 
of student majors are the same for each of the three classes, then she can 
say that the two categorical variables—“student major” and “class”—are 
statistically independent. Otherwise, there is a statistical dependence 
between the two. Since this test is essentially used to detect an association 
between two categorical variables, it is also called the chi-square test of 
association or chi-square test of homogeneity. The null hypothesis of this 
test (H0) is that the two variables are statistically independent, and the 
alternative hypothesis (Ha) is that they are statistically dependent.  

The chi-square test is a nonparametric test; it applies to categorical 
variables and does not assume normality in the data. However, it still 
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assumes that the samples are randomly selected from, and hence are 
representative of, the populations. Also, the number of occurrences for 
each possible combination of groups in the two variables (the counts in 
each cell of Figure 5) must be greater than 5. In case of smaller counts, 
one may use Fisher’s exact test55 as an alternative.  

 
 
 
 
 
 
 
 
 

Figure 5: Chi-square Test of Association between Major and Class 

A chi-square test produces a statistic that follows a chi-square (χ2) 
probability distribution. As with the t-test, the precise shape of the chi-
square distribution depends on the degree of freedom. Suppose that there 
are g1 groups in the first categorical variable and g2 groups in the second 
variable. Then the degree of freedom for chi-square test is df = (g1 – 1) × 
(g2 – 1). 

In PER, the chi-square test is a common technique for making 
comparisons of distributions among different groups of students. 
Rosengrant, Van Heuvelen, and Etkina56 investigated student use of free-
body diagrams for solving physics problems. They categorized the quality 
of student-generated free-body diagrams into four levels: 0—no diagram, 
1—inadequate diagram, 2—diagram needs improvement, and 3—adequate 
diagram. They also divided student responses to the physics problems into 
two groups: correct and incorrect responses. A chi-square test was 
conducted using diagram quality and response correctness as two 
categorical variables. The authors found that the distributions of correct 
and incorrect responses were statistically different for the four levels of 
diagram quality, and that those who drew adequate free-body diagrams 
were more likely to solve the problems correctly. 

When comparing distributions, it is possible that a researcher may have to 
deal with more than two categorical variables and wish to test the 
associations inter alia. In such a case, a multi-way frequency analysis is an 
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appropriate choice. The core ideas of this analysis are similar to those of a 
chi-square test but contain more complex levels of association. Due to the 
introductory nature of this article, we only give this technique a passing 
note without further discussion. Interested readers can refer to Tabachnick 
and Fidell57 for more details. 

3.3 Interpret analysis results in experimental/quasi-experimental 
studies 

Evaluating the significance of a test is a key component for data 
interpretation of inferential statistics in PER experimental/quasi-
experimental studies. As discussed before, each test generates a statistic 
and an associated p value. By comparing this p value with a predetermined 
level of significance α, a researcher can make a decision to either accept or 
reject the null hypothesis. Typically, the conventional value for α is 0.05, 
but in case of high-stake situations, a researcher may heighten the 
standards by making the value smaller. Nevertheless, the opposite rarely 
happens. Unless there are sufficient reasons to warrant such a decision, 
one should refrain from loosening the cut-off significance level.  

If a researcher detects a significant difference, she/he may wish to further 
identify where the difference lies. This is not a problem for two-sample 
comparisons but can be effortful if one has multiple groups. A 
recommended approach, which is not discussed in the above subsections, 
is to perform ad hoc analyses by making pair-wise comparisons. When 
doing so, one should use a more stringent value for the significance level 
α. Consider a case in which there are 7 groups. Among them there are 
7(7–1)/221 pairs. This means there need to be 21 pair-wise 
comparisons. If a 5% error probability is allocated to each pair as before, 
then there will be a total error of 105%, which is not sensible. To 
overcome this problem, a common practice is to use the conventional 
value 0.05 divided by the number of possible pairs which can simply be 
determined by calculating the 2-combination of all groups (i.e., the 
Bonferroni adjustment).8 As such, there can still be a total of 5% error in 
the case of multiple pair-wise comparisons. For example, in the case of 7 
groups, there are 21 possible pairs. So, the new significance level α for 
pair-wise comparison is 0.5/21 = 0.0024. 

As mentioned earlier, for certain analyses such as two-way ANOVA and 
ANCOVA, one should examine the significance levels for interactions 
first before interpreting main effects. One common oversight in this type 
of analysis is that a researcher may overlook the existence of significant 
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interactions and jump directly to a therefore unwarranted broad-brush 
comparison for main effects. It is therefore crucial that a researcher 
thoroughly document and examine proper statistics before drawing 
conclusions and making inferences. It is also important to bear in mind 
that the significance levels generated from any analysis are always 
associated with specific statistics and degrees of freedom. In order to 
allow proper interpretations, one should keep a complete note of all 
relevant information (including statistics, degrees of freedom, and p values 
for both main effects and interactions) in research manuscripts either for 
his/her own sake or for replication studies by other researchers.  

It is worth noting that however powerful a statistical analysis may be, it is 
after all just a tool that can inform one of what a result is but cannot tell 
why the result is such. It is the researcher’s job to make credible 
inferences for the reasons that underlie the results and connect them back 
to the original theoretical framework. To achieve this, a researcher must 
begin with a series of well thought-out goals and designs. It is important to 
remember that there is no panacea in statistics that can salvage a poorly 
designed quantitative study. 

4. Measurement Instrument Development and 
Validation in Evaluation Studies 

Empirical PER studies sometimes require a researcher to conduct a 
systematic evaluation of a program or a curriculum by developing 
appropriate measurement instruments that serve its specific learning goals. 
In this type of study—often referred to as an evaluation study—a bulk of 
work involves using quantitative methods for developing measurement 
instruments to ensure that they are valid and reliable.g Some frequently 
used methods that can serve this purpose include classical test theory,58-60 
Rasch measurement,14-16, 61 and item response theory.62, 63 In a previous 
volume of Getting Started in PER, Engelhardt18 provided a thorough 
discussion on using Classical Test Theory (CTT) to develop multiple-
choice measurement instruments. In this article, we focus specifically on 
Rasch measurement as an alternative method for developing and 
validating measurement instruments. Given the limited space, we only 

                                                 
g Since some key concepts regarding validity and reliability have been discussed 
by Engelhardt in the previous volume of Getting Started in PER, we avoid 
repeating and encourage readers to peruse that article for more details. 
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introduce Rasch measurement as a special case of Item Response Theory 
(IRT) and leave IRT as a separate topic for future discussion.  

In what follows, we first provide a brief overview of what Rasch 
measurement is and what it can do. To better relate to the previous 
volumes, we discuss Rasch measurement in comparison with CTT to 
highlight the similarities and differences between them. We then introduce 
some key issues in practical applications of Rasch measurement. As 
before, we discuss the following three aspects: data collection, data 
analysis, and results interpretation. Here we highlight key issues about 
Rasch measurement and where possible refer interested readers to other 
resources for more details. 
 
4.1 Rasch measurement theory vs. classical test theory 

 
Rasch measurement is based on a model initially developed by Danish 
mathematician George Rasch; it is a probabilistic model that utilizes 
logistic regression to calibrate individual questions in an assessment. As 
with CTT, the purpose of Rasch measurement is to help a researcher 
examine psychometric properties of an assessment, so that problematic 
questions can be identified for revision. Although there are major 
differences between Rasch measurement and classical test theory as 
discussed in the following, both can be used to establish validity evidence 
for a measurement instrument (or informally an assessment) through 
analyzing the interrelations between the questions therein. For instance, in 
CTT, individual questions are assumed to be parallel, which means that 
they should measure the same construct in order for the entire test to be 
reliable. Ideally, the correlations of individual questions with total test 
scores should be high (see Engelhardt18 for more details). Researchers 
who use CTT to evaluate an assessment therefore strive to seek such 
evidence. Similarly, in Rasch measurement individual questions are 
analyzed under the unidimensionality assumption; simply put, all 
questions should measure the same underlying construct in order for the 
data to fit the model. Researchers look for fit statistics of individual 
questions to examine whether or not this unidimensionality requirement is 
sufficiently met.  
 
However, the two theories differ in some fundamental aspects. First, the 
conceptual foundations of the two theories are considerably different. CTT 
assumes that a person’s score on an item is a manifestation of a true score 
that is inherent to the person.59, 60 Under this conceptual framework, a 
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measured score (x) can be expressed as a sum of two components: a true 
score (T) and an error (e):  

x = T + e 
CTT treats the error component (e) as a random effect, which on average 
cancels out if repeated measurements are taken. This is why CTT requires 
that all questions in an assessment should be parallel. On the other hand, 
the Rasch measurement theory does not assume that a measured score is a 
simple linear approximation of a true score inherent to a person. Instead, it 
conceptualizes the measured score as a probabilistic result of the 
interactions between a person and an item (question).61 Presumably, each 
person possesses some ability that an assessment intends to measure, and 
items at various difficulty levels are designed to measure the same ability. 
In Rasch measurement, the probability (Pr) of an observed score (x) is 
formulated as a function of both person ability (βn) and item difficulty (δi):  
 

 
 
The goal of Rasch measurement is to estimate the person ability (βn) and 
item difficulty (δi) that underlie the observed raw data (x). 

Another important difference between CTT and Rasch measurement lies 
in the nature of the data used in analyses. CTT uses raw data for analysis 
to generate a list of psychometric properties, including item difficulty, 
discrimination, Cronbach’s alpha, and Ferguson’s delta.64 As mentioned 
before, raw data collected from multiple-choice tests are at the ordinal 
level, and therefore performing certain mathematical operations with the 
raw data may cause problems. For tests containing rating-scale questions 
or partial-credit questions, this issue becomes even more prominent. 
Consider a survey of 10 rating questions, each asking students to express 
their agreement by selecting a response from five choices: strongly 
disagree, disagree, neutral, agree, and strongly agree. A score is assigned 
to each choice, ranging from –2 (strongly disagree) to +2 (strongly agree). 
A traditional approach to estimating a student’s performance on the survey 
is to take the sum (or the average) of the scores on the individual 
questions. In order for this approach to be valid, one has to assume that the 
locations of the two extreme choices on a rating scale are the same for 
each question, and the distance between any two consecutive choices is a 
constant.14, 61 As one may realize, these assumptions are virtually 
impossible to fulfill. Therefore, the traditional approach by summing 
and/or averaging individual scores for ordinal data is problematic.  
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Rasch measurement, on the other hand, transforms ordinal-level raw data 
into two separate sets of interval-scale data through iterative logistic 
model fitting. One transformed data set is person ability estimates (βn), 
and the other is item difficulty estimates (δi). These two data sets share the 
same scale called the Logit scale, as it can be derived from taking the 
logarithm of the ratio between the two probabilities of Pr (x = 1) and Pr (x 
= 0).61 Since both are at the interval level, it is legitimate to make 
comparisons among persons, items, and between persons and items by 
using various mathematical operations. For instance, if Rasch analysis 
generates four person ability estimates β1 = 1, β2 = 2, β3 = 3, and β4 = 4, 
then we can claim that the difference between 3 and 1 has exactly the 
same meaning as the difference between 4 and 2, and that it is twice the 
difference between 4 and 3. Likewise, given a set of four item estimates δ1 
= 1, δ2 = 2, δ3 = 3, and δ4 = 4, we can make similar claims about items in 
terms of their difficulty levels. Moreover, we can make direct comparisons 
between person ability (βn) and item difficulty (δi) to find out the 
probability of a person’s correct performance (x = 1) on a question.  

Perhaps one of the most important features of Rasch measurement that 
distinguishes it from CTT is the invariant nature of person and item 
measures. In CTT, all psychometric properties are sample-dependent. For 
instance, the estimate of an item difficulty level depends on to whom this 
item is administered. If a group of strong students answer this item, then 
the results may show this item being too easy. Conversely, if a group of 
weak students answer this question, then the results may indicate it is a 
difficult item. Similarly, the estimate of a student score depends on what 
items are used in the test. Using a set of difficult questions may result in 
underestimation of student true performance; whereas using a set of easy 
questions may result in overestimation of student true performance. 
However, in Rasch measurement person ability and item difficulty 
estimates are sample independent.61 This is because Rasch measurement 
no longer relies on raw data; instead it uses the probabilistic framework to 
uncover person ability and item difficulty that underlie the raw data. In 
this case, selecting students of different abilities does not affect the 
estimates of item difficulty, and similarly pooling different items does not 
affect the estimates of person abilities. This sample independent feature is 
also referred to as the invariant property of Rasch measurement. 

With the general background about the Rasch measurement theory in 
mind, we now proceed with a brief discussion on some practical aspects 
that relate to data collection and data analysis/interpretation in using Rasch 
measurement for evaluation studies. 
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4.2 Prepare for data collection in Rasch measurement 
 

As mentioned before, Rasch measures are sample invariant. This puts less 
restriction on which samples a researcher must include for analysis. That 
said, in real practice it is highly recommended that a researcher carefully 
choose an appropriate student audience for testing and where possible 
include students of various abilities into a sample to increase precision. In 
Rasch analysis, the precision of estimates for person ability and item 
difficulty depends largely on the extent to which their distributions match 
each other. Generally speaking, the more closely they match, the more 
precise the estimates are.  
 
Another important consideration for data collection is sample size. In fact, 
there is no consensus on what minimum sample size one should use for 
Rasch analysis. Some researchers argue that a sample as small as 50 
should suffice.65 Some argue that a minimum sample of 200 and a set of 
20 items are necessary for precise estimation of both person ability and 
item difficulty.66 That said, in most situations a sample of 100 students can 
be considered adequate for a test of 10-20 items. If it is a high-stakes test, 
a minimum of 250 students with 20 items may be needed. In the case of 
rating-scale surveys or partial-credit tests, extra caution is needed, because 
more parameters, other than the item difficulty levels, are estimated in 
these types of assessments. Interested readers can refer to reference 65 for 
more details. 
 
Also important is selecting an appropriate model for Rasch analysis. 
Depending on the format of the assessment questions, one can choose to 
use a dichotomous Rasch model, rating scale model, or partial credit 
model.61 Due to the introductory nature of this article, we omit further 
discussions on these models. Readers can consult reference 61 for more 
details. 
 
4.3 Analyze and interpret data in Rasch measurement 

 
Fit statistics generated by Rasch measurements can help a researcher 
identify whether or not individual items fit the unidimensionality 
assumption and, if not, which items may need to be revised. There are two 
sets of fit statistics in Rasch analysis; they are item fit statistics and person 
fit statistics. Item fit statistics allow a researcher to examine whether or 
not the items in an assessment fit under the unidimensionality assumption 
and if not which items may be problematic. Person fit statistics can reveal 
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which individuals may demonstrate inconsistent response behaviors; for 
example, a high-ability student may incorrectly answer easy questions, or 
a low-ability student correctly answers difficult questions.  
 
Both fit statistics can be reported in two forms: an un-standardized form 
called mean square residual (MNSQ) and a standardized form of the t 
statistic. A mean square residual (MNSQ) is the average of squared 
differences between model expected values and actual observation values. 
When combined with sample size, MNSQ can be transformed into a t 
statistic. For each fit statistic (MNSQ and t), Rasch analysis reports two 
aspects of measure, namely infit and outfit. Infit statistics (infit MNSQ 
and infit t) put more weight on data points that have a close match 
between person ability and item difficulty, thus minimizing the effect of 
outliers; whereas outfit statistics (outfit MNSQ and outfit t) give equal 
weight to all data and hence are less sensitive to outliers.  
 
Typically, MNSQ values within the range of [0.7, 1.3] and t statistics 
within the range of [–2, +2] are considered as acceptable. If fit statistics of 
an item exceed the upper bounds of the above ranges, then this item may 
not fit under the unidimensionality condition and can be even haphazard to 
the overall construct of the assessment (because of too much variation). 
On the other hand, if the fit statistics of an item fall short of the lower 
bounds, then the item does not contribute to the assessment (because of 
too little variation in the data). However, these ranges should not be taken 
rigidly, as there is no one-size-fits-all rule. Interested readers can refer to 
reference 67 for more details. 
 
Finally, it is important to remember that as with any other statistical 
techniques, Rasch modeling can only inform us of problematic items but 
can never tell us why they are problematic. Again the burden rests with 
researchers to find out why these items fail to fit the overall construct of 
an assessment and then revise them by using a well-articulated framework.  

5. Summary and Suggestions for Further Reading 

We have provided in this article a brief introduction to commonly used 
PER quantitative methods to help readers get started in this research area. 
We first discussed what PER quantitative studies are, how different they 
are from quantitative studies in other fields of physics, and what their 
typical research questions may look like. Given the different nature of 
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three types of PER quantitative studies, namely survey research, 
experimental/quasi-experimental studies, and evaluation studies, we 
reviewed three major groups of quantitative techniques—descriptive 
statistics, inferential statistics and Rasch models—that match the goals of 
the three types of research respectively. Table 1 shows a summary of these 
quantitative techniques, including their purposes, necessary data set, 
typical statistical information, and key requirements.  
 
Readers who are interested in learning more about these techniques and 
others are encouraged to seek additional resources relevant to the topics 
discussed in this article. The following are some good materials that may 
help readers gain more in-depth knowledge in this field. 
 

A. Agresti and B. Finlay, Statistical methods for the social sciences 
(Pearson Education, Upper Saddle River, NJ, 2009). 

T. G. Bond and C. M. Fox, Applying the Rasch model: fundamental 
measurement in the human sciences (Routledge, Taylor & Francis, 
N.Y., 2007). 

D. T. Campbell and J. Stanley, Experimental and quasi-experimental 
designs for research (Rand, McNally & Co., Chicago, 1963) 

M. Hollander and D. A. Wolfe, Nonparametric statistical methods (John 
Wiley & Sons, New York, 1999). 

S. W. Huck, Reading statistics and research (6thedition) (Harper Collins 
College Publishers, New York, 2011) 

X. Liu, Using and developing measurement instruments in science 
education: A Rasch modeling approach (Information Age 
Publishing, 2010). 

B. Tabachnick and L. S. Fidell, Using multivariate statistics (6th edition) 
(Pearson, Boston, 2012). 
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Table 1 A Summary of Descriptive Statistics, Inferential Statistics and 
Measurement Instrument Development/validation Techniques 
 

Research 
Type 

Quantitative 
Method Sample Variables Statistics 

Degrees of 
Freedom 

Descriptive statistics 1 1 variable µ, S, σ, etc. n/a 

Survey 
Research  Correlation 1 2 variables 

r (interval/ratio) 
ρ (ordinal) 
φ (nominal 

dichotomous) 

n/a 

Repeated t-test 1 2 continuous IV t N – 1  

McNemar test 1 2 dichotomous IV χ2 1 

Two-sample t-test 2 2 continuous IV t N – 2  

One-way ANOVA 
2 or 

more 
1 categorical IV;  
1 continuous DV 

F g – 1 , N – g  

Two-way or multi-
way ANOVA 

2 or 
more 

2 or more 
categorical IV; 

1 continuous DV 
F 

g1 – 1; g2 – 1; 
N – g1×g2 

One-way ANCOVA 
2 or 

more 

1 categorical IV;  
1 continuous IV;  
1 continuous DV 

F 
g – 1; 

 N – g – 1  

Two-way or multi-
way ANCOVA 

2 or 
more 

2 or more 
categorical IV; 

1 continuous IV; 
1 continuous DV 

F 
g1 – 1; g2 – 1; 
N – g1×g2 – 1  

Chi-squared test 
2 or 

more 
2 categorical IV χ2 (g1 –1)×(g2 –1) 

Experimental 
and Quasi-

experimental 
Studies  

Multi-way analysis 
2 or 

more 
3 or more 

categorical IV 
G2 (g1 –1)×(g2 –1) 

×(g3 –1)… 

Rasch measurement 
1 or 

more n/a 
Fit statistics 

(MNSQ and t) n/a 
Evaluation 

Studies Classical Test 
Theory 

1 or 
more 

n/a 
Item & test 

statistics (see 
Ref 18) 

n/a 
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